An Upper Bound of the Total Q-curvature and Its Isoperimetric Deficit for Higher-dimensional Conformal Euclidean Metrics

نویسنده

  • J. XIAO
چکیده

To begin with, let us agree to some basic conventions. We employ the symbols ∆ and ∇ to denote the Laplace operator ∑nk=1 ∂/∂xk and the gradient vector (∂/∂x1, ..., ∂/∂xn) over the Euclidean space R , n ≥ 2. For notational convenience we use X . Y as X ≤ CY for a constant C > 0. We always assume that u is a smooth real-valued function on R, written u ∈ C∞(Rn), and then it generates a conformal metric g = eg0 which is indeed a conformal deformation of the standard Euclidean metric g0 = ∑n k=1 dx 2 k. The volume and surface area elements of the metric g are given by dvg = e dH and dsg = e(n−1)udHn−1 where Hk stands for the k-dimensional Hausdorff measure. So, the volume and surface area of the open ball Br(x) and its boundary ∂Br(x) with radius r > 0 and center x ∈ R have the following values:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On conformal transformation of special curvature of Kropina metrics

      An important class of Finsler metric is named Kropina metrics which is defined by Riemannian metric α and 1-form β  which have many applications in physic, magnetic field and dynamic systems. In this paper, conformal transformations of χ-curvature and H-curvature of Kropina metrics are studied and the conditions that preserve this quantities are investigated. Also it is shown that in the ...

متن کامل

Evolutes and Isoperimetric Deficit in Two-dimensional Spaces of Constant Curvature

We relate the total curvature and the isoperimetric deficit of a curve γ in a two-dimensional space of constant curvature with the area enclosed by the evolute of γ. We provide also a Gauss-Bonnet theorem for a special class of evolutes.

متن کامل

The Isoperimetric Inequality and Quasiconformal Maps on Manifolds with Finite Total Q-curvature

In this paper, we obtain the isoperimetric inequality on a conformally flat manifold with finite total Q-curvature. This is a higher dimensional analog of Li and Tam’s result [“Complete surfaces with finite total curvature.” Journal of Differential Geometry 33 (1991): 139–68] on surfaces with finite total Gaussian curvature. The main step in the proof is based on the construction of a quasiconf...

متن کامل

BEST ISOPERIMETRIC CONSTANTS FOR (H 1, BMO)-NORMAL CONFORMAL METRICS ON R n, n ≥ 3 †

Alice Chang’s Question: A very general question is to ask “What is the geometric content of Q-curvature?” For example, we know that one can associate the scalar curvature with the conformally invariant constant called the “Yamabe constant”. When this constant is positive, it describes the best constant (in a conformally invariant sense) of the Sobolev embedding of W 1,2 into L space; this in it...

متن کامل

TOWARD BEST ISOPERIMETRIC CONSTANTS FOR (H 1, BMO)-NORMAL CONFORMAL METRICS ON R n, n ≥ 3 †

Alice Chang’s Question: A very general question is to ask “What is the geometric content of Q-curvature?” For example, we know that one can associate the scalar curvature with the conformally invariant constant called the “Yamabe constant”. When this constant is positive, it describes the best constant (in a conformally invariant sense) of the Sobolev embedding of W 1,2 into L space; this in it...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009